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Abstract In the spirit of establishing analogies and diferences among systems with SU( l ,  I) 
and SU(2) algebras, we study the motion of an SU(1.1) kicked lop in the semiclassical 
approximation as given by the coherenl states represenmion. For this sake, we have proposed a 
Hamiltonian with the same algebraic “re as the one studied by Haake d nl for the SU(2) 
case, so as lo investigate the modifications undergone by the phase portrait when changing a 
compact into a nonampact manifold. Analogously to the problem discussed by W e  el al. 
we obtain one involulion and ¶he associated symmetry line where fixed points lie: however, 
in contrast with the SU(2) case, there exists an infinite number of solutions for every set of 
parameters When increasing the strength of the kick no new slationay points xe  bm: instead. 
existing fixed points simply move towards the vertex of a cuwe and eventually, two of lhem 
merge togelher and annihilate. No other type of bifurcation is detected. 

1. Introduction 

Forced systems have periodically attracted generous attention among theorists in the field of 
nonlinear dynamics. In particular the kicked rotator has become a paradigm [I] of a mobile 
exhibiting both regular and chaotic motion in the classical Limit, as well as an important 
tool with which to investigate the characteristics and scope of quantum chaos 121. 

Among several approaches a special realization of a quantum kicked top has been 
examined by Haake 121. A major feature of the model proposed in 121 and.of the technology 
developed to carry out the analysis of the motion resides in the extensive use of the 
algebraic and topological properties of angular momentum operators. In fact, the time- 
dependent Hamiltonian that accounts for a periodic sequence of impulses perturbing a free 
spin precession is a quadratic function of the SU(2) algebra generators. Due to this structure, 
the Hamiltonian belongs to a class whose time-independent version has been intensively 
investigated [3,4] in the semiclassical representation, which gives rise to a nonlinear Euler- 
like equation of motion on the sphere capable of exhibiting structural instabilities 151. 
More recently, it has been shown [6] that semiclassical descriptions of pseudospin systems 
with quadratic Hamiltonians can be analysed with the previous methods. In this frame, 
a pseudospin operator is the vector K = (6, &,I?,) of the SU(1, l )  algebra generators; 
since the corresponding Lie group manifold is non-compact, the index of a curve [7] is 
not necessarily conserved under a bifurcation. Consequently, the semiclassical phase Row 
possesses a richer structure than for quasispin SU(2) systems, since the total number of 
fixed points is not a constant. 

Since SU(  I ,  1) Hamiltonian models present a large variety of physical realizations (see 
for example [&IO]), especially in quantum optics &d many-body problems, we believe that 
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a natural byproduct of this prior work [6] is to investigate the main characteristics of the 
stroboscopic map for a kicked system. Indeed, Gerry et al [I 11 have recently investigated the 
regular and stochastic motion of a pulsating SU(1, 1) model aimed at representing squeezed 
vacuum states in a nonlinear optical environment. In this work, the traces of classical chaos 
are weak in the quantum version. In view of this result, rather than attempting a comparison 
between the classical and the quantum dynamics, in the present paper we are particularly 
concerned with learning about the type of bifurcation that the classical phase flow may 
undergo when the kicking strength is varied [5, 61, as compared with the equivalent SU(2) 
model. 

With this in mind, we present a model for a kicked SU(1,l) top similar to that in 
[2] and consider the map associated with the nonlinear Bloch equation for the pseudospin 
vector [6] in the presence of the pulsating perturbation. This is the subject of section 2. In 
section 3, we examine the simplest symmetries of the map and the evolution in parameter 
space is illustrated by a numerical example in section 4. The contents of this paper are 
summarized in section 5. 

E S Hernandez and D M Jezek 

2. Derivation of the map 

We consider a kicked system with SU(l.1) specmm generating algebra for the unperturbed 
motion, the generators being the components of the pseudospin vector K satisfying the 

The Casimir operator is 

C = ~ k i  - i: -e (4) 

with eigenvalue k(k  - 1) in the Bargmann representation Ik, n)  [12]. Following Haake [Z] 
we select the Hamiltonian 

where r is the period of the pulsating perturbation and p, U strength parameters. 
It is well known in the theory of kicked systems [2,11,13] that the mapping for times 

nr is achieved by operating on state vectors and observables with the quantum propagator 

U(nr, 0) = U(5,  0)” (6) 
where the one-step evolution splits into a fiee propagation between kicks multiplied by a 
jump through the perturbation, i.e. 

~ ( r ,  0) = exp(-i&) exp(-iplz). (7) 
In the present study we restrict ourselves to the semiclassical map obtained from the 

action of the evolution operator (7) on an SU(1,  1) coherent state lz) defined as [14] 

12) = exp(z.C+ - z i - ) ~ k ,  0) (8) 
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where 2+ = k l f k z  and z ='tanh($e-'m). These states are in  oneto-one correspondence 
with points in the upper branch of a two-sheeted hyperboloid in a three-dimensional space 
K = ( k ~ ,  kz, k3) with k; = (zl%lz) (see, for example, [6] and references therein); this 
quadric is defined by 

C ( K )  =g-  k: -k;  k k3 > k > 0. (9) 

This is due to an essential property of coherent states of the SU(1,l)  group, namely 
the factorization relationship [6], 

where [, I+ denotes the anticommutator and A1 = A2 = -A3 = -&k.  
Accordingly, we consider  that the pseudospin motion takes place on the manifold (9) 

at any time; in such a case, for any Hamiltonian f i ( K ) ,  the variational principle leads to a 
classical equation of motion [6], 

(11) K = -$VU x VC 

H(K)  = (zlfilz) (12) 

with 

and C given by (9). Considering (5) and (IO), one obtains 

thus 

k =  ( ( E  r +2X(t)k*)k3.-ZX(t)kik3, 91) . (14) 

(15) 

with 

The equation of motion (14) can be integrated as follows. One realizes that for 
(n - I)r < f < nr, the pulsating perturbation is not active; the time variation of the 
pseudospin is the free one, 

k~ = (p/r)k3 (16) 

k; = 0 (17) 

(18) k3 = ( p / z ) k i .  
~~ 

Calling r+ and r- the times just after and just before the kick that takes place in t = nr, 
and ro the time after the kick in t = (a - l )r ,  one readily gets the unitary map 

kl(r-) =kl(ro)coshp - k3(7O)sinh,p (19) 

' kz(T-) = kz(T0) (20) 

(21)' k3(r-) = -kl(ro) sinh p + k3(r0) cosh p .  
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Now during the kick, say between r- and T+, the pseudospin jumps according to 

ki = 2~(t)ktk3 (22) 

kz = -2X(t)klk3 (23) 

k 3 = 0  (24) 

and it is worthwhile noticing that either dynamical system (16H18) or (22x24) preserves 
the manifold definition (9). i.e. both are maps of the hyperboloidal sheet onto itself. 

Equations (ZZH24) cannot be straightforwardly integrated in spite of the appearance of 
the Dirac’s delta in ~ ( t ) ,  since the values of the components kl and k2 of K(r) at t = nz 
are indeterminate, so we found that it is convenient to work in polar coordinates 

K = k(cos@ sine, sin4 sine, cos@). (25) 

It is clear from (22)-(24) that K moves in a circle in the (kl, kz) plane: in particular it 
is verified that klkl+ kzkz = 0. Replacing (25) on (22x24) we obtain 

d = 2~( t )k3  (26) 

which leads directly to 

@(T+) = 2Xk3 f $(T-) (27) 

with x = or(2k + 1)/2k, and so, finally, 

kl(r+) = kcos@(r+)) = cos(2~k&(r-) - sin(2xk3)kz(r) 

kz(r+) = ksin(@(r)) = cos(2~k3)kz(r)) f sin(2xk3)kl(r). 

(28) 

(29) 

The full map between so and r+ is then the composition of (28x29) and (19)-(21), 
actually 

ki = (kl cosh p - k3 sinh p )  cos(2xk;) - kz sin(2xk;) 

k; = (kl cosh p - k3 sinh p) sin(2xk;) + kZ cos(2~k;) 

k; = -kl sinh p + k3 coshp 

(30) 

(31) 

(32) 

with the abridged notation = k;(r+) and ki = ki(s0). It is worthwhile noticing that this 
procedure applied to the kicked SU (2) top yields precisely the equations of motion on the 
sphere derived by resorting to the one-step propagator 111. 

It is interesting to note that, even though a transformation such as equation (25) could 
not be written, equation (7) shows that the dynamics can be interpreted as generated by two 
time-independent Hamiltonians acting during disjoint periods 71 and TZ with TI + TZ = T. 
For each choice of the decomposition intervals, the subsequent equations of motion may be 
straightforwardly integrated. 
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3. Symmetries and invariant points 

The set of equations (30)-(332) represent a nonlinear area-preserving map 

K' = F (K)K  (33) 

with unitary matrix 

cosh p cos(2kk;) - sin(2Xk;) - sinh p cos(2xk;) 
F ( k )  = cosh p sin(2Xk;) cos(2xk;) - sinhp sin(2xg) . (34) 

- sinh p 0 sinh p 
It is now possible to verify that the linear transformation T K ,   with T defined by 

-coshp 0 sinhp 

-sinhp 0 coshp 
T = l  0 (35) 

satisfies the following set of conditions: 

(i) TZ = Z, with Z the 3 x 3 identity matrix; 
(ii) det T = - 1; 
(ui) TFT = F-', where the inverse transformation F-' is the time-reverie one F(-r).  

Following the procedure employed by W e  er ai [Z] to locate periodic orbits and 
fixed points of the map using involutions, one can, in particular, define the so-called T-line, 
namely the symmetry line 

~ 

TK = K .  (36) 

One finds the plane 

sinhp 
coshp + 1 kl = k3. (37) 

Equation (37) simply says that as the kick conserves the value of k f ,  a fixed point must 

Furthermore, setting k = 1, the fixed points KO = F(K0) satisfy the relation 
verify that the rotation around k2 also leaves k3 (see equation (21)) invariant. 

with x = 2Xk3 and U = (cosh(p) - l)/sinh(p). 
When x is small, for low values of x, equation (38) m y  be approximated by 

~ X = J w  

and for large x 

x = 2sin-'(*v). 

(39) 

.~ 

Equation (39) has a single solution, k3 = Jm > 1, while (40) gives an infinite 
number of fixed points (U is always less than one). When increasing the parameter x these 
points move towards the vertex of the curve 
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given by the intersection of the hyperboloid with the plane in equation (37). Note that as 
v does not depend on x the values of x do not change when varying it. Morover, it is 
easy to obtain this result from the geometrical viewpoint. Indeed, for large values of k3 
the manifold may be visualized as a cone k: = k; + k$ and the fixed points lie in the 
intersection with the plane (37), i.e. kl = vk3. One may convince oneself that the free 
precession around kz leaves points on the intersection with invariant k3 and switches k, to 
k; = -kl. On the other hand, the kick is in charge of returning the latest to the original kl.  
A simple geometrical construction in the (kz, kl) plane shows that the above condition can 
only take place if sin(Xk3) = kl/k3 = v .  

When x is increased the character of the fixed points changes for values of x and x 
encountered by solving f(x, x) = 0 together with f ’ ( x ,  x) = 0, that is equation (38) and 
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The left-hand side of the last equation is a rapidly oscillating function, thus in principle 
one may have an infinite set of solutions. Replacement of each root in equation (38) yields 
a critical value x. 

Moreover, if we work on variables x and x from equation (38) it may be seen that, 
when increasing ,y, the function f(x, x )  shifts down; if we study the second derivative of 
f (x ,  x) with respect to x in the bifurcation points (i.e. for points that verify (42)), using 
(38) it is easy to obtain the expression: 

so we can assert that for values of x > v‘? the critical points correspond to maxima. Taking 
these two characteristics into account, we conclude that, for values of x that verify the last 
condition, the type of bifurcation that occurs is the annihilation of a pair of points. 

Other involutions (TF)“ give rise to a large collection of sequences of fixed points. 
Due to the impossibility of classifying the latter in a systematic manner, we shall illustrate, 
in the next section, the evolution of the Poincar6 sections as one chooses a path in parameter 
space. 

4. Numerical results 

We have iterated the map (30)-(32) for several choices of the parameters p and x. A 
typical path that illustrates the features discussed at the end of the preceding section 
consists of choosing a value p = 0.5, which in turn yields U = 0.2449, and varying 
x. In figure 1 we show the phase diagram projected on (a) the plane (kl,k3) and (6) the 
plane (k2, k3), for ,y = 0.1. We see that it presents a regular region around the fixed point 
K = (0.65,2.35,2.64), whose coordinates correspond to equation (39). In figure 2 we 
show the same diagrams as in figure 1 for a larger value x = 0.25. It may be seen that 
the flux becomes more irregular and the fixed point drifts towards K = (0.35,0.95, 1.42). 
It should be noticed that, according to equation (41), the lowest attainable value of k3 for 
a fixed point-namely the vertex of the intersection curve-is around 1.03. Up to our 
precision, for x = 1 the fixed point has already reached the vertex whose cordinates are 
(0.25,0, 1.03): for this value of x ,  other fixed points have appeared which may be calculated 
using equation (40). In this case, the islands that appear in figure 3 between 1.4 < k3 < 1.8 
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Figure 1. (a) Projection of the phase pomait on~tbe plane (kl, k3) for p = 0.5 and ,y = 0.1; 
( b )  phase portrait projection on h e  plane (kz, k3) for p = 0.5 and ,y = 0.1. 

correspond to fixed points of F2. For larger values of x, the area of the region of irregular 
motion increases and the islands ,become too tiny, almost resembling isolated points; the 
Poincar6 map is then of limited interest. Such behaviour when increasing the intensity of'  
the kick is~due to the accumulation of fixedpoints. 

In table 1 we show the values of k3 and x for the solutions of equation (42) together 
with (38). 

In the asymptotic limit x >> 1 the largest contribution f ' ( x , x )  in equation (42) 
comes from the first term; then the roots in the given equation correspond to xk3 = 
x/Z = (2n + 1)~/2 .  Equation (38) yields the coordinate x in the bifurcation set, namely 
x ~ =  o ( 2 n  + l)ir/2 from where we finally obtain k3 = (1 - Y*)- ' /~  for the critical 
points on the manifold. 
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0.0 .I 
-6.0 0.0 6.0 ki 

5.0 "'f 
(4 
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( b )  -81) -40 0.0 4.0 k, 

Figure 2. (a) Same as figure I(a) for x = 0.25. (b) same as figure I(b) for x = 0.25. 

From table 1 it could be seen that, within our precision, the last two lines already 
correspond to the asymptotic limit. Further excursions on ,y are then irrelevant. 

By inspecting the first column of this table it is obvious that the condition Written below 
equation (43) holds for all values of x ,  so we conclude that the type of phase transition that 
occurs is the merging of two critical points into none. 

In other words, when increasing the strength of the kick the critical points move toward 
the vertex of the curve given by equation (41) and collapse in pairs near the vertex. It is 
clear that though the manifold is not compact it does not possess an associated characteristic; 
however, the sum of the indices of the critical points involved in a bifurcation remains 
constant. 
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0.0 
(a) -8.0 -4.0 0.0 40 k2 

Figure 3. (a) Same as figure l(a) for x = 1; (b) same as figure l(b) for x = 1. 

Table 1. The first column corresponds CO the solutions of equation (42), while in the secand 
and thid columns we show the kick streugih prameter and the k3 coordinate of the b i f d o n  
points. respectively. 

xk3 X ~ k3 

556 ~ 2.29 2.42 
8.6 8.11 1.06 
11.7 11.08, 1.05 
14.7 14.07 1.04 
17.8 17.07 1.04 
20.9 20.09 1.04 
24 23.1 1.03 
73.1 26.12 1.03 
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5. Summary 

E S Hernandez and D 11.1 Jezek 

In this work we have attempted to push one step forward in the field of semiclassical 
descriptions of the motion for systems with spectrum generating algebras, so as to make 
room for timedependent Hamiltonians that contain a periodic sequence of kicks. As a 
first contribution in this direction, we have investigated the simplest generalization of the 
SU(2)  kicked top in [Z], just replacing quasispin operators J by pseudospin operators K. 
We have insisted on the picture presented in previous work conceming the dynamics on 
nonlinear manifolds, through nonlinear Euler- or Bloch-like equations of motion, and have 
constructed a strosboscopic map on the nonlinear and non-compact phase space associated 
with the SU(1, 1) group manifold. The advantage of the method employed here is that it 
is not necessary to look for the spectral representation of the one-step evolution operator. 
This advantage would, however, be lost if one was interested in looking at the spectrum of 
quasifrequencies of the kicked motion in order to look for statistical properties and traces 
of quantum chaos [2,11]. 

A numerical application illustrates the birth and death of fixed points in the near- 
vertex region of the hyperboloideal phase space. Richer phase diagrams can be obtained 
looking at different regions of parameter space; in view of the infinite set of involutions and 
related symmehy lines, it is not possible, within our current means, to present a normalized 
classifications of phase flow transitions. 
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